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What have we covered so far?

Functions

Recursive functions

Lists
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What are sets?

Set is a fundamental mathematical concept .

We could say:
Definition: A set is a collection of objects called the 
elements of the set.

But to be rigorous, we should define precisely what 
a collection is. 
The definition is informal. We'll see that it's 
important to formalize it.
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What are sets?

We have two distinct notions : element and set
x ∈ S : the element x is a member of the set S

y ∉ S: the element y is not a member of the set S

Unlike lists:

The order of the elements does not matter

{1, 2, 3} = { 2, 1, 3}

An element cannot appear more than once

{1, 2, 3, 2}
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How do we define sets?

By description : { the set of divisors of 6 }

By listing elements:
A = { a, b, c }, D = {1 , 2 , 3 , 6} = the set of divisors of 6
The elements of the set are written between braces, 
separated by a comma.

By a characteristic property:
S = { x | x has the property P ( x )}
D ( n ) = { d ∈ N | n mod d = 0} ( the set of divisors of n )

We know : the set of natural numbers N, integers Z, rationals 
Q, reals R, ...
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Subsets

A is a subset of B : A ⊆ B
if every element of A is also an element of B .
A is a proper subset of B : A ⊂ B
if A ⊆ B and there is (at least) an element x∈B such that x∉A.

∈ is a relationship between an element and a lot . 
⊆ and ⊂ are relations between two sets .

To prove that A ⊈ B it is enough to find an element x ∈ A for 
which x ∉ B.

If A ⊆ B and B ⊆ A , then A = B ( the sets are equal)
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Basic set operations

The union of sets :

A ∪ B = {x | x ∈ A or x ∈ B }

Venn diagram representation:

9https://en.wikipedia.org/wiki/Venn_diagram



Basic set operations

The intersection of sets:

A ∩ B = {x | x ∈ A and x ∈ B }

10https://en.wikipedia.org/wiki/Venn_diagram



Basic set operations

The difference of sets:

A \ B = {x | x ∈ A and x ∉ B }

11https://en.wikipedia.org/wiki/Venn_diagram



Basic set operations

Usually, we discuss it in a context: we have a 
universe U of all the elements we could refer to.
The complement of a set ( with respect to the 
universe U):
𝐴𝐶 = {x ∈ U | x ∉ A } = U \ A (denoted also Ā)

.
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Basic set operations

Symmetric difference of sets:

A Δ B = (A \ B) ∪ ( B \ A)

.
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Basic set operations

If we fix the universe U of elements, we can 
represent any set S ⊆ U by the characteristic 
function

fS : U → B: f (x ) = ቊ
True if x ∈ S
False else (if x ∉ S)

.
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Boolean algebra of sets

The notion is due to the mathematician George Boole 
(19th century)The 
The operations of a Boolean algebra (here ∪ and ∩ ) 
satisfy the properties:

Commutativity : A ∪ B = B ∪ A            A ∩ B = B ∩ A

Associativity :
(A ∪ B) ∪ C = A ∪ (B ∪ C ) and (A ∩ B) ∩ C = A ∩ (B ∩ C )

Distributivity : A ∪ (B ∩ C ) = (A ∪ B) ∩ (A ∪ C ) and
A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
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Boolean algebra of sets

The operations of a Boolean algebra (here ∪ and ∩) 
satisfy the properties:

Identity : there are two values (here ∅ and the 
universe U ) such that:

A ∪ ∅ = A A ∩ U = A

Complement : every A has a complement 𝐴𝑐 (or Ā ) 
such that:

A ∪ 𝐴𝑐 = U A ∩ 𝐴𝑐 = ∅
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Boolean algebra of sets

Other properties (can be deduced from the 
above):

Idempotence : A ∪ A = A A ∩ A = A    

Absorption : A ∪ (A ∩ B) = A A ∩ (A ∪ B) = A

Double complement : (𝐴𝑐)𝑐 = A
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Boolean algebra of sets

Other properties (can be deduced from the above):

Complements of identity elements : ∅𝑐 = U U𝑐 = ∅

Universal limit : A ∪ U = U A ∩ ∅ = ∅

De Morgan's laws :
(A ∪ B)𝑐 =𝐴𝑐 ∩𝐵𝑐 (A∩B)𝑐 =𝐴𝑐 ∪ 𝐵𝑐

We will review these laws in propositional logic .
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Sets, foundation of mathematics

The set is one of the most important 
concepts in modern mathematics .

Georg Cantor (1874) - created set 
theory, which became a fundamental 
theory of mathematics in the work 
"Uber eine Eigenschaft des Inbegriffes 
aller reellen algebraic Zahlen ” (“On a 
Property of the Collection of All Real 
Algebraic Numbers").

Known as Naive Set Theory.
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Sets, foundation of mathematics

Cantor established the importance of one-to-one 
correspondences between the members of two sets, 
defined infinite and well-ordered sets , and showed that 
the real numbers are much more numerous than the 
natural numbers.

Cantor's method of proof of this theorem implies the 
existence of an infinity of infinities.
He defined the cardinal and ordinal numbers and their 
arithmetic.

Cantor's work is of great philosophical interest.

21https://ro.wikipedia.org/wiki/Georg_Cantor



Sets, foundation of mathematics

Practically all mathematics can be formalized in set theory.
(or in logic, to which it is closely related, as we shall see)

Example: a pair (ordered) can be defined:
(a, b) = {{a} , {a , b}} - how can we extract a and b from ( a, b )?
Intersection , difference
(1921, Kazimierz Kuratowski - Polish mathematician who made 
important contributions to topology, set theory and graph 
theory.)

But starting from imprecise, natural language definitions, 
paradoxes appear in the naive theory of sets.
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Russell's paradox

Let R be the set of all sets that do not contain themselves:

R = { X | X ∉ X }

Does the set R contain itself?
– if yes R ∈ R , to satisfy the definition condition , we have R ∉ R .
– if R∉ R , then R satisfies the condition , so R ∈ R : paradox !

An intuitive formulation ( the barber's paradox ):
– The barber shaves exactly the people who don't shave 

themselves. Does the barber shave himself or not?

23



Russell's paradox

The paradox caused serious problems for the 
formalization of mathematical logic.

It can be avoided in several ways , imposing 
restrictions on how a set can be defined .

e.g.: We cannot define a set only by a property 
P(x), we must specify the universe from which it 
can take its elements:

R = { X | X ⊆ U and X∉ X }
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Axiomatic set theory

An axiom is a sentence that is assumed to be true. It 
is a starting point for reasoning.

Axiomatic systems were developed to avoid 
paradoxes of naive set theory ( with notions defined 
in natural language)

The most widespread : the Zermelo-Fraenkel system 
(developed between 1907-1930).
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Axiomatic set theory

A few axioms :

Axiom of extensionality :
Two sets are equal if and only if they have the same elements
( if every element of A is also an element of B , and vice versa)

∀A, ∀B (A = B ⇔ ∀c (c ∈ A ⇔ c ∈ B))

Axiom of the empty set ( existence):
There is a set that has no element

∃E∀X ¬(X ∈ E )
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Axiomatic set theory
Axiom of regularity (of foundation )
Every nonempty set has an element x ∈ A disjoint from it:
x ∩ A = ∅

∀X (X ≠ ∅) ⇒ ∃Y (Y ∈ X  ∧ ¬∃Z (Z ∈ X  ∧ Z ∈ Y ))
It follows that there is no infinite sequence A 0 , A 1 , . . . A n . . . 
so that

A 0 ∋ A 1 ∋ . . .∋ A n ∋ . . .
( { A 0 , A 1 , . . . } would be such a set)
It follows that no set can have as element , X ∉ X ,
otherwise X∋ X∋ X ... would be such a string
Intuitive: any set is made up of simpler elements (possibly 
sets), which in turn contain simpler elements, until we reach 
fundamental elements
⇒ that eliminates Russell's paradox
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Cardinal of a set

The cardinal (cardinality) of a set is the number 
of elements of the set.

Cardinal of a set is noted |A|.

Can have sets: 

- finite : |{1, 2, 3, 4, 5}| = 5 or

- infinite : N, R, etc.
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Cardinal of reunion, intersection, 
difference

For finite sets :

Reunion law:

| A ∪ B | = | A | + | B | − | A ∩ B |

Difference law:

| A \ B | = | A | − | A ∩ B |

29



The power set (the set of sudsets)

The set of subsets (power set) of a set S, denoted 
P(S) (sometimes 2S ):

P(S) = { X | X ⊆ S }

Example, for S = { a, b, c }, we have:

P(S) = {∅ , { a } , { b } , { c } , { a, b } , { a, c } , { b , c 
} , { a , b, c }}

If S is finite, then |P( S )| =2|S|
30



Tuples and Cartesian product

An n-tuple is a string of n elements (x1 ,x2, ... , xn)

Properties :

- the elements are not necessarily distinct 

- the order of the elements in the tuple matters 

Special cases: pair ( a, b ), triplet ( x, y, z )
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Tuples and Cartesian product

Cartesian product of two sets is the set of pairs

A × B = {( a, b ) | a ∈ A, b ∈ B }

The cartesian product of n sets is the set of n−tuples

A1 × A2 × . . . × An = {( x1 , x2 , . . . , xn) | x i ∈ A i , 1 ≤ i ≤ n }

If the sets are finite, then

| A 1 × A 2 × . . . × A n | = | A 1 | · | A 2 | · . . . · | A n |
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Sets in PYTHON

Sets are collections that hold multiple elements in a 
single variable.

They are one of the basic collections in PYTHON (besides 
Lists, Tuples and Dictionaries)

Sets are collections:
- unordered
- not indexed

- do not allow duplicates among elements
- must contain only immutable elements
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Sets in PYTHON

To create an array we list the elements of the 
array in curly braces { } or we will use the 
constructor set()

set1 = {1, 2, 3, 4, 5}

set2 = set ((1, 2, 3, 4, 5))

set3 = set([1, 2, 3, 4, 5])
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Sets in PYTHON

To create an empty set we will only be able to use the 
set() function, if we define an empty set with two braces, 
PYTHON will interpret it as a dictionary.

X = set()
print ( type ( X ) )
# < class 'set'>

Y = {}
print ( type ( Y ) )
# < class ' dict '>
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Sets in PYTHON

The order the elements do not matter. On display, 
the elements may appear in a different order.

set1 = {1, 11, 4, 5, 3, 2}

print ( set1 )

# {1, 2, 3, 4, 5, 11}

# {1, 2, 3, 4, 11, 5 }

# { 1, 3, 4 , 2 , 11, 5 }
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Sets in PYTHON

Duplicate items will be retained only once

set1 = {1, 11, 4, 5, 3, 2 , 1, 1, 2 }

print ( set1 )

# {1, 2, 3, 4, 5, 11}

38



Sets in PYTHON

To find the number of elements in a set we can 
use the len() function

set1 = {1, 11, 4, 5, 3, 2}

print ( len ( set1 ) )

# 6
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Sets in PYTHON

The elements can have different types of data :

days = {“ monday ”, “ tuesday ”, “ wednesday ”}
numbers = {1, 2, 3}
values = {True, False}

A set can contain different types of data at the 
same time:

set1 = {“ monday ”, 1 , True }
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Sets in PYTHON

The elements of a set are immutable.

A tuple can be an element of a set:

x = { 3 , 4 , (1, 2, 3 )}

A list ( or a dictionary ) cannot be an element:

A={3, [4, 5,6 ]}
It will generate error

TypeError : unhashable type: 'list'
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Access to set elements

Set elements cannot be accessed by index.

We can check if an element is in a set with in:

if (x in {1, 2, 3 } )

print ("item is in the set")

else

print ("element is not in the set")
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Adding new items

Once a set is created, its elements cannot be modified, 
instead elements can be added or deleted from the set.

We can add new elements to the set with the add() 
method

set1 = {1, 11, 4, 5, 3, 2 }

set1.add (29)

print (set1)

# {1, 2, 3, 4, 5, 11, 29}
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Adding new items

We can add all the elements of another set to the 
current set with the update() method

days = {"Monday","Tuesday","Wednesday"}
weekend_days = {“Saturday",“Sunday"}
days.update (weekend_days)
print (days)

#{ 'Sunday', 'Tuesday', 'Wednesday', 'Monday', 
'Saturday'}
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Deleting items

We can delete elements from a set using remove() 
or discard() methods

days = {"Monday","Tuesday","Wednesday"}

days.remove ( "Tuesday" )

days.discard ( "Wednesday" )

print (days )

# { 'Monday'}
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Deleting items

remove() method will throw an error if called 
with a non-existent element, while the discard() 
method will not throw an error.

days = {"Monday","Tuesday","Wednesday"}

days.remove ("Thursday") # will generate error

days.discard ("Thursday") #will not generate error

print (days)
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Deleting items

To delete all elements of a set we use the clear() 
method

days = {"Monday","Tuesday","Wednesday"}

days.clear()

print (days)

# set()
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Deleting items

To delete the set completely we can use del

days = {"Monday","Tuesday","Wednesday"}

del days

print (days)

# print( days )

# NameError : name ' days' is not defined
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Sets Operations

We can compute the reunion of two sets with the 
union() method . The union() method will create a 
new set that will contain the elements of both sets.

set1 = {"a", "b", "c"}
set2 = {1, 2, 3}
set3 = set1. union (set2)
print (set3 )

# { 'a', 1, 'b', 2, 3, 'c '}
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Sets Operations

We can calculate the intersection of two sets with 
the intersection() method .

set1 = { 2, 3, 4, 5 }

set2 = {1, 2, 3}

set3 = set1. intersection (set2)

print (set3)

# {2, 3}
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Sets Operations

We can calculate the difference of two sets with the 
difference() method .

set1 = { 2, 3, 4, 5 }

set2 = {1, 2, 3}

set3 = set1.difference(set2)

print (set3)

# {4, 5}
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Sets Operations

We can calculate the symmetric difference of two 
sets with the symmetric_difference() method.

set1 = { 2, 3, 4, 5 }

set2 = {1, 2, 3}

set3 = set1. symmetric_difference (set2)

print (set3)

# {1, 4, 5}
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Sets Operations

union(), intersection (), difference() methods can also be 
used with multiple arguments:

A = {1, 2, 3, 4}
B = {2, 3, 4, 5}
C = {3, 4, 5, 6}
D = {4, 5, 6, 7}
E = A.union (B, C, D)  # E = {1, 2, 3, 4, 5, 6, 7 }
F = A.intersection (B, C) # F = {3, 4}
G = A.difference (C, D) # G = {1, 2 }

Method symmetric_difference() has only one argument .
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Sets Operations
We can check whether a set is a subset or superset of another 
set with the methods issubset() and issuperset()
A = {1, 2, 3, 4}
B = {2, 3}

print(B.issubset(A)) # True
print(A.issubset(B)) # False

print(B.issuperset ({1, 2, 3, 4}) ) # False
print(A.issuperset ({1, 2, 3, 4} )) # True

print(A.issubset(A)) # True
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Sets Operations

In Python we can use operators for sets:

Reunion the operator | C = A| B

Intersection the operator & D = A & B

Difference the operator – E = A - B

The symmetric difference the operator ^ F = A ^ B

Subset the operators < and <= A < B

Superset the operators > and >= B >= A
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Sets Operations

Example :

A = {1, 2, 3, 4}

B = { 3, 4, "a", "b", "c "}

C = A | B #C = {1, 2, 3, 4, 'a', 'b', 'c '}

D = A & B #D = {3, 4 }

E = A – B #E = {1, 2 }

F = A ^ B #F = {1, 2, 'a', 'b', 'c'}
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Sets Operations

If we want the result of an operation to be found in the 
current set and not to generate a new set with the result of 
the operation, we will use the methods: update(), 
intersection_update () , difference_update (), 
symmetric_difference_update ():

A = {1, 2, 3, 4}

B = {2, 3, 4, 5}

A.update(B)    # A = {1, 2, 3, 4, 5}

A.intersection_update(B)  # A = {2, 3 , 4, 5}

A.difference _update(C) # A = {2}

Note that each operation above will modify the set A, and the 
next method will use the new composition of A
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Sets Operations

If we want a set to have another set as an element and 
we write:

A = {{1,2,3}, {7}}

We will receive error TypeError : unhashable type: 'set'

It does not let us write this syntax because the elements 
of the set A must be immutable objects.

To be able to do such operations, PYTHON provides us 
with a set that does not allow changes once it has been 
created: frozenset
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Sets Operations

Sets of type frozenset can use all the methods and operators 
of the set data type except those that modify the structure of 
the set.

Example:
A = frozenset ( { 'a ', 'b', 'c ' } )
print (A)    # frozenset ({'a', 'b', 'c'})
print (len(A)) # 3
print (A & {'a', 'b','z '})   # frozenset ({'a', 'b '})
A = { frozenset ({1,2,3}), frozenset ({7})}

print (A. add ('d ')) # this call will generate the error :
AttributeError : ' frozenset ' object has no attribute 'add'
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Sets Operations

The map(), filter(), and reduce() functions discussed for 
working with lists can be used similarly for sets. The 3 
functions have an iterable as parameter.

We can iterate over a set (in the style of functional 
programming) with the help of the reduce() function:

import functools
M = {1, 2, 3, 4}
functools.reduce(lambda acc, elem: print(elem), M, 0)

The last argument of the reduce function (0, in the example 
above) indicates from which initial value to loop the function.
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Exercises with sets

1. Write a function that returns the set of all divisors of a 
positive number n given as an argument. Iterate using 
recursive functions.

def set_of_divisors (n, A= set (), i =2):
if ( i >n/2):

return A
else :

if (n % i == 0):
A. add ( i )

return set_of_divisors (n, A, i+1)

print ( set_of_divisors (20))
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Exercises with sets
2 . Implement the standard filter function that takes as 
parameters a Boolean function (condition, predicate) f 
and a set s and returns the set of elements in s that 
satisfy the function f. Iterate the original set with the 
reduce() function.
Below is an example of using the filter() function , which we 
need to implement ourselves:

def odd (x):
return x % 2

B= set ( filter ( odd , {1, 2, 3, 4, 5, 6}))
print (B )
# {1, 3, 5}

64



Exercises with sets
import functools
def my_filter (f , A, B= set ()):

def function ( acc , elem ):
if (f( elem )):

B.add ( element )
return f( element )

functools.reduce ( function , A, 0 )
return B

def odd (x):
return x % 2

B=set( my_filter ( odd , {1, 2, 3, 4, 5, 6}))
print (B )
# {1, 3, 5}
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Thank you!
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